Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitas alrededor del Sol. Aunque él no las describió así, en la actualidad se enuncian como sigue:
- Primera ley (1609): Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas. El Sol se encuentra en uno de los focos de la elipse.
- Segunda ley (1609): el radio vector que une un planeta y el Sol barre áreas iguales en tiempos iguales.
La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol.
- Tercera ley (1618): para cualquier planeta, el cuadrado de su período orbital es directamente proporcional al cubo de la longitud del semieje mayor de su órbita elíptica.
Donde, T es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol), (L) la distancia media del planeta con el Sol y K la constante de proporcionalidad.
Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influencia gravitatoria, como el sistema formado por la Tierra y la Luna.
El estudio de Newton de las leyes de Kepler condujo a su formulación de la ley de la gravitación universal.
La formulación matemática de Newton de la tercera ley de Kepler para órbitas circulares es:
La fuerza gravitacional crea la aceleración centrípeta necesaria para el movimiento circular:
Al reemplazar la velocidad v por (el tiempo de una órbita completa) obtenemos
Donde, T es el periodo orbital, r el semieje mayor de la órbita, M es la masa del cuerpo central y G una constante denominada Constante de gravitación universal cuyo valor marca la intensidad de la interacción gravitatoria y el sistema de unidades a utilizar para las otras variables de esta expresión.
No hay comentarios:
Publicar un comentario